Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611900

RESUMO

Triazoles and triazolium salts are very common subunits in the structures of various drugs. Medicaments with a characteristic 1,2,3-triazole core are also being developed to treat neurodegenerative disorders associated with cholinesterase enzyme activity. Several naphtho- and thienobenzo-triazoles from our previous research emerged as being particularly promising in that sense. For this reason, in this research, new naphtho- and thienobenzo-triazoles 23-34, as well as 1,2,3-triazolium salts 44-51, were synthesized and tested. Triazolium salts 44-46 showed excellent activity while salts 47 and 49 showed very good inhibition toward both butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzymes. In contrast, neutral photoproducts were shown to be selective towards BChE but with very good inhibition potential as molecules 24-27. The representative of newly prepared compounds, 45 and 50, were stable in aqueous solution and revealed intriguing fluorimetric properties, characterized by a strong Stokes shift of >160 nm. Despite their condensed polycyclic structure shaped similarly to well-known DNA-intercalator ethidium bromide, the studied compounds did not show any interaction with ds-DNA, likely due to the unfavorable steric hindrance of substituents. However, the studied dyes bind proteins, particularly showing very diverse inhibition properties toward AChE and BChE. In contrast, neutral photoproducts were shown to be selective towards a certain enzyme but with moderate inhibition potential. The molecular docking of the best-performing candidates to cholinesterases' active sites identified cation-π interactions as the most responsible for the stability of the enzyme-ligand complexes. As genotoxicity studies are crucial when developing new active substances and finished drug forms, in silico studies for all the compounds synthesized have been performed.


Assuntos
Butirilcolinesterase , Inibidores da Colinesterase , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase , Simulação de Acoplamento Molecular , Sais , Complexos Multienzimáticos , Triazóis/farmacologia
2.
Bioorg Chem ; 143: 106965, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064804

RESUMO

New analogs of the well-known bioactive trihydroxy-stilbene resveratrol were synthesized to investigate their potential biological activity. The focus was on assessing their ability to inhibit cholinesterase enzymes (ChEs) and their antioxidative properties, which were thoroughly examined. New resveratrol analogs were synthesized through Wittig or McMurry reaction in moderate-to-good yields. In all synthetic pathways, mixtures of cis- and trans-isomers were obtained, then separated by chromatography, and trans-isomers were isolated as targeted structures. The stilbene derivatives underwent evaluation for antioxidant activity (AOA) using DPPH and CUPRAC assay, and their potential to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) was also measured. The biological tests have shown that the same compounds exhibited significant antioxidative and butyrylcholinesterase inhibitory potential, as evidenced by lower IC50 values compared to the established standards, trans-resveratrol, and galantamine, respectively. Additionally, molecular docking of the selected synthesized potential inhibitors to the enzyme's active site was performed, followed by assessing the complex stability using molecular dynamics simulation lasting 100 ns. Lastly, the new compounds underwent examination to determine their potential mutagenicity.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Resveratrol/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Antioxidantes/farmacologia
3.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834138

RESUMO

New 1,2,3-triazolo(thieno)stilbenes were synthesized as mixtures of isomers and efficiently photochemically transformed to their corresponding substituted thienobenzo/naphtho-triazoles in high isolated yields. The resulting photoproducts were studied as acetyl- (AChE) and butyrylcholinesterase (BChE) inhibitors without or with interconnected inhibition potential of TNF-α cytokine production. The most promising anti-inflammatory activity was shown again by naphtho-triazoles, with a derivative featuring 4-pentenyl substituents exhibiting notable potential as a cholinesterase inhibitor. To identify interactions between ligands and the active site of cholinesterases, molecular docking was performed for the best potential inhibitors. Additionally, molecular dynamics simulations were employed to assess and validate the stability and flexibility of the protein-ligand complexes generated through docking.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Triazóis/farmacologia , Triazóis/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Ligantes
4.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175190

RESUMO

Naphtho-triazoles and thienobenzo-triazoles have so far proven to be very potent inhibitors of the enzyme butyrylcholinesterase (BChE). Based on these results, in this work, new thienobenzo-thiazoles were designed and synthesized, and their potential inhibitory activity was tested and compared with their analogs, naphtho-oxazoles. The synthesis was carried out by photochemical cyclization of thieno-thiazolostilbenes obtained in the first reaction step. Several thienobenzo-thiazoles and naphtho-oxazoles have shown significant potential as BChE inhibitors, together with the phenolic thiazolostilbene being the most active of all tested compounds. These results are significant as BChE has been attracting growing attention due to its positive role in the treatment of Alzheimer's disease. Computational examination based on the DFT approach enabled the characterization of the geometry and electronic structure of the studied molecules. Furthermore, the molecular docking study, accompanied by additional optimization of complexes ligand-active site, offered insight into the structure and stabilizing interactions in the complexes of studied molecules and BChE.


Assuntos
Butirilcolinesterase , Tiazóis , Butirilcolinesterase/química , Simulação de Acoplamento Molecular , Tiazóis/farmacologia , Tiazóis/química , Oxazóis , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade
5.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982951

RESUMO

This study aims to test the inhibition potency of new thienobenzo/naphtho-triazoles toward cholinesterases, evaluate their inhibition selectivity, and interpret the obtained results by molecular modeling. The synthesis of 19 new thienobenzo/naphtho-triazoles by two different approaches resulted in a large group of molecules with different functionalities in the structure. As predicted, most prepared molecules show better inhibition of the enzyme butyrylcholinesterase (BChE), considering that the new molecules were designed according to the previous results. Interestingly, the binding affinity of BChE for even seven new compounds (1, 3, 4, 5, 6, 9, and 13) was similar to that reported for common cholinesterase inhibitors. According to computational study, the active thienobenzo- and naphtho-triazoles are accommodated by cholinesterases through H-bonds involving one of the triazole's nitrogens, π-π stacking between the aromatic moieties of the ligand and aromatic residues of the active sites of cholinesterases, as well as π-alkyl interactions. For the future design of cholinesterase inhibitors and search for therapeutics for neurological disorders, compounds with a thienobenzo/naphtho-triazole skeleton should be considered.


Assuntos
Butirilcolinesterase , Inibidores da Colinesterase , Inibidores da Colinesterase/química , Butirilcolinesterase/metabolismo , Triazóis/farmacologia , Triazóis/química , Relação Estrutura-Atividade , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular
6.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234916

RESUMO

New resveratrol-thiophene and resveratrol-maltol hybrids were synthesized as cholinesterase inhibitors and antioxidants. As with photostability experiments, biological tests also found remarkable differences in the properties and behavior of thiophene and maltol hybrids. While resveratrol-thiophene hybrids have excellent inhibitory and antioxidant properties (similar to the activity of reference drug galantamine), maltols have been proven to be weaker inhibitors and antioxidants. The molecular docking of selected active ligands gave insight into the structures of docked enzymes. It enabled the identification of interactions between the ligand and the active site of both cholinesterases. The maltols that proved to be active cholinesterase inhibitors were able to coordinate Fe3+ ion, forming complexes of 1:1 composition. Their formation constants, determined by spectrophotometry, are very similar, lgK = 11.6-12.6, suggesting that Fe3+ binds to the common hydroxy-pyranone moiety and is hardly affected by the other aromatic part of the ligand. Accordingly, the characteristic bands in their individual absorption spectra are uniformly red-shifted relative to those of the free ligands. The crystal structures of two new resveratrol-maltol hybrids were recorded, giving additional information on the molecules' intermolecular hydrogen bonds and packing. In this way, several functionalities of these new resveratrol hybrids were examined as a necessary approach to finding more effective drugs for complicated neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Oligoelementos , Doença de Alzheimer/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Quelantes/química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Colinesterases/metabolismo , Galantamina , Humanos , Ligantes , Simulação de Acoplamento Molecular , Pironas , Resveratrol , Relação Estrutura-Atividade , Tiofenos
7.
Arch Pharm (Weinheim) ; 355(11): e2200208, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35876340

RESUMO

Reactivation of inhibited acetylcholinesterase remains an important therapeutic strategy for the treatment of poisoning by organophosphorus compounds, such as nerve agents or pesticides. Although drugs like obidoxime or pralidoxime have been used with considerable success, there is a need for new substances capable of reactivating acetylcholinesterase with a broader scope and increased efficacy. Possible screening candidates must fulfill two fundamental requirements: They must (i) show an affinity to acetylcholinesterase well balanced between sufficient binding and competitive inhibition and (ii) facilitate the nucleophilic cleavage of the phosphorylated catalytic serine residue. We attached a variety of nonaromatic primary and secondary amines to a coumarin core through selected alkoxy side linkers attached at coumarin positions 6 or 7 to obtain a small set of possible reactivators. Evaluation of their inhibition and reactivation potential in vitro showed some activity with respect to acetylcholinesterase inhibited by cyclosarin.


Assuntos
Acetilcolinesterase , Reativadores da Colinesterase , Humanos , Acetilcolinesterase/metabolismo , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Inibidores da Colinesterase/farmacologia , Oximas/química , Relação Estrutura-Atividade , Compostos Organofosforados/farmacologia , Cumarínicos/farmacologia
8.
Eur J Med Chem ; 241: 114616, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35870364

RESUMO

New 1,2,3-triazolo(thieno)stilbenes were synthesized by Wittig reaction and photochemically transformed to corresponding substituted thienobenzo/naphtho-triazoles in high isolated yields. They were prepared to study the acetyl- and butyrylcholinesterase inhibition associated with the inhibition of TNFα cytokine production and anti-inflammatory activity. The best experimental results were achieved with the allyl-thienobenzotriazole and isopropyl, p-methoxybenzyl, and hydroxybutyl substituted naphthotriazoles bearing additional chloro or methoxy groups. The allyl-thienobenzotriazole photoproduct is twice as potent an inhibitor of eqBChE compared to the standard galantamine. At the same time, this compound strongly inhibited TNFα production in PBMCs in response to the LPS stimulus. The complexes between selected compounds with the active site of BChE and AChE are assessed by docking, providing insight into the stabilizing interactions between the potential inhibitor and the active site.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Acetilcolinesterase/metabolismo , Anti-Inflamatórios/farmacologia , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia , Fator de Necrose Tumoral alfa
9.
Bioorg Chem ; 121: 105701, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35228009

RESUMO

New 1,2,3-triazolostilbenes were synthesized and photochemically transformed to substituted naphthotriazoles as electrocyclization products in high isolated yields for studying the acetyl- and butyrylcholinesterase inhibitory and anti-inflammatory activity. The best experimental results showed the naphthotriazole photoproducts providing interesting observation on cholinesterase inhibition associated with the inhibition of TNFα cytokine production. The geometries of synthesized triazolostilbenes were computationally examined using Density Functional Theory (DFT), followed by time-dependent DFT calculations to obtain insight into electronic properties observed by UV-Vis spectroscopy. The complexes between selected compounds with the active site of AChE are assessed by docking. A quantum mechanical cluster approach was utilized to optimize their structures, thus providing insight into the stabilizing interactions between the potential inhibitor and the active site.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Fotoquímica , Relação Estrutura-Atividade , Triazóis/farmacologia
10.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614053

RESUMO

In this research, the synthesis, photochemistry, and computational study of new cis- and trans-isomers of amino-thienostilbenes is performed to test the efficiency of their production and acid resistance, and to investigate their electronic structure, photoreactivity, photophysical characteristics, and potential biological activity. The electronic structure and conformations of synthesized thienostilbene amines and their photocyclization products are examined computationally, along with molecular modeling of amines possessing two thiophene rings that showed inhibitory potential toward cholinesterases. New amino-styryl thiophenes, with favorable photophysical properties and proven acid resistance, represent model compounds for their water-soluble ammonium salts as potential styryl optical dyes. The comparison with organic dyes possessing a trans-aminostilbene subunit as the scaffold shows that the newly synthesized trans-aminostilbenes have very similar absorbance wavelengths. Furthermore, their functionalized cis-isomers and photocyclization products are good candidates for cholinesterase inhibitors because of the structural similarity of the molecular skeleton to some already proven bioactive derivatives.


Assuntos
Benzilaminas , Tiofenos , Fotoquímica , Tiofenos/farmacologia , Modelos Moleculares , Corantes
11.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34832929

RESUMO

The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) by organophosphates (OPs) as nerve agents and pesticides compromises normal cholinergic nerve signal transduction in the peripheral and central nervous systems (CNS) leading to cholinergic crisis. The treatment comprises an antimuscarinic drug and an oxime reactivator of the inhibited enzyme. Oximes in use have quaternary nitrogens, and therefore poorly cross the brain-blood barrier. In this work, we synthesized novel uncharged thienostilbene oximes by the Wittig reaction, converted to aldehydes by Vilsmeier formylation, and transformed to the corresponding uncharged oximes in very high yields. Eight trans,anti- and trans,syn-isomers of oximes were tested as reactivators of nerve-agent-inhibited AChE and BChE. Four derivatives reactivated cyclosarin-inhibited BChE up to 70% in two hours of reactivation, and docking studies confirmed their productive interactions with the active site of cyclosarin-inhibited BChE. Based on the moderate binding affinity of both AChE and BChE for all selected oximes, and in silico evaluated ADME properties regarding lipophilicity and CNS activity, these compounds present a new class of oximes with the potential for further development of CNS-active therapeutics in OP poisoning.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120056, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34146829

RESUMO

The synthesis, photoreactivity, and spectroscopic characterization of novel 1,2,3-triazole di-heterostilbenes bearing various aliphatic and aromatic substituents on the triazole rings were thoroughly explored. By introducing triazole rings into the o-divinylbenzene moiety, compared with the 2-furyl and 2-thienyl heteroanalogues, these compounds did not show any photochemical reactivity toward intramolecular cycloaddition reactions or electrocyclization processes. The research is further extended to the more in-depth examination of photochemical and photophysical characteristics of the investigated triazolo-stilbenes to explain the lack of reactivity in intramolecular photochemical cyclizations by configuration and substituent effects. Conformations of synthetically obtained novel triazoles are examined by Density Functional Theory (DFT). The time dependent-DFT approach was employed to obtain additional insight into the properties observed with UV/Vis spectroscopy. The frontier orbital energy was computationally investigated to determine the influence of cis-trans isomerism and the nature of substituents on the spectroscopic properties of the triazoles. Along with our previous studies of similar compounds containing furan and thiophene, respectively, this study shows that introducing various heteroaromatic rings induces diverse photochemistry and photophysics due to the conformational changes and change in electronic distribution within the molecular system.


Assuntos
Triazóis , Ciclização , Conformação Molecular , Fotoquímica , Análise Espectral
13.
Chemistry ; 27(29): 7930-7941, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33792120

RESUMO

Diol dehydratase, dependent on coenzyme B12 (B12 -dDDH), displays a peculiar feature of being inactivated by its native substrate glycerol (GOL). Surprisingly, the isofunctional enzyme, B12 -independent glycerol dehydratase (B12 -iGDH), does not undergo suicide inactivation by GOL. Herein we present a series of QM/MM and MD calculations aimed at understanding the mechanisms of substrate-induced suicide inactivation in B12 -dDDH and that of resistance of B12 -iGDH to inactivation. We show that the first step in the enzymatic transformation of GOL, hydrogen abstraction, can occur from both ends of the substrate (either C1 or C3 of GOL). Whereas C1 abstraction in both enzymes leads to product formation, C3 abstraction in B12 -dDDH results in the formation of a low energy radical intermediate, which is effectively trapped within a deep well on the potential energy surface. The long lifetime of this radical intermediate likely enables its side reactions, leading to inactivation. In B12 -iGDH, by comparison, C3 abstraction is an endothermic step; consequently, the resultant radical intermediate is not of low energy, and the reverse process of reforming the reactant is possible.


Assuntos
Propanodiol Desidratase , Cobamidas , Glicerol , Humanos , Hidroliases , Fosfotreonina/análogos & derivados
14.
Molecules ; 25(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105595

RESUMO

A library of amine, oxime, ether, epoxy and acyl derivatives of the benzobicyclo[3.2.1]octene were synthesized and evaluated as inhibitors of both human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The majority of the tested compounds exhibited higher selectivity for BChE. Structural adjustment for AChE seems to have been achieved by acylation, and the furan ring opening of furo-benzobicyclo[3.2.1]octadiene results for compound 51 with the highest AChE affinity (IC50 = 8.3 µM). Interestingly, its analogue, an oxime ether with a benzobicyclo[3.2.1]-skeleton, compound 32 was one of the most potent BChE inhibitors in this study (IC50 = 31 µM), but not as potent as endo-43, an ether derivative of the benzobicyclo[3.2.1]octene with an additional phenyl substituent (IC50 = 17 µM). Therefore, we identified several cholinesterase inhibitors with a potential for further development as potential drugs for the treatment of neurodegenerative diseases.


Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Ciclo-Octanos/química , Bibliotecas de Moléculas Pequenas/síntese química , Acilação , Benzilaminas/química , Inibidores da Colinesterase/metabolismo , Teoria da Densidade Funcional , Compostos de Epóxi/química , Éter/química , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Oximas/química , Relação Estrutura-Atividade
15.
Org Lett ; 21(22): 9142-9146, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31680528

RESUMO

With the synthesis of N,N',N″,N‴-tetrakis(3-(dimethylamino)propyl)triaminophosphazene (TDMPP, 1), we present the first phosphazene superbase with enhanced basicity through the effect of multiple intramolecular hydrogen bonding (IHB). Due to intramolecular solvation of four NH protons, the proton affinity is even higher than that of second-order phosphazene (dma)P2-tBu. X-ray structural proof, NMR titration experiments, and computational investigations provide a more detailed quantitative description of the IHB influence on the superbasicity of 1 in solid-state, solution, and the gas-phase.

16.
ACS Omega ; 4(12): 15197-15207, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31552365

RESUMO

New neutral organic superbases with 1-azaazulene(s) as a molecular backbone are computationally designed, employing two basic substituents: dimethylaminocyclopropen-imines (CPI) and dimethylaminocyclopropeniminophosphazenes (CPI-P). Their proton affinities, gas basicities, and pK a values in acetonitrile are obtained using density functional theory. Azaazulenes substituted with CPI have a computed PA in the gas phase ranging between 272.9 and 306.8 kcal mol-1, with pK a values in acetonitrile between 28.8 and 36 units. The substitution with the CPI-P group resulted in even stronger superbases, with a PA from 296.5 to 335.2 kcal mol-1 and corresponding pK a values from 33.9 to 50 units. This exceptionally strong thermodynamic basicity is accompanied by very high kinetic basicity as well; contrary to typical proton sponges, the release of a proton from the conjugate superbase does not demand high activation energy. Because synthetic routes for both substituents and azaazulenes are already known, newly designed superbases represent suitable targets for synthesis and application.

17.
J Phys Chem B ; 123(29): 6178-6187, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31251060

RESUMO

Molecular dynamics (MD) simulations have been employed for the first time to gain insight into the geometry of glycerol (GOL) bound within the active site of B12-dependent diol dehydratase (B12-dDDH). A peculiar feature of the B12-dDDH enzyme is that it undergoes suicidal inactivation by the substrate glycerol. To fully understand the inactivation mechanism, it is crucial to identify all possible interactions between GOL and the surrounding amino acid residues in the enzyme-substrate complex. Particularly important is the orientation of the C3-OH group in GOL since the presence of this OH group is the only difference between GOL and propanediol (PDO), a substrate for B12-dDDH that does not induce suicidal inactivation. The MD simulations indicate that glycerol can adopt two conformations that differ with respect to the orientation of the C3-OH group; in one conformer, the C3-OH group is oriented toward Ser301 (C3-OH···Ser301), and in the other toward Asp335 (C3-OH···Asp335). Although the former configuration is consistent with the crystal structure of B12-dDDH crystallized with cyanocobalamin (CNCbl) as the cofactor, MD simulations of this system suggest a substantial predominance of the latter conformer. A similar result with an even higher preference for the latter conformer is obtained for B12-dDDH with 5'-deoxyadenosylcobalamin (AdoCbl) as a cofactor. Employing QM/MM calculations it is found that the energy difference between the two conformers of GOL is very small in CNCbl B12-dDDH, where the slightly preferred conformer is C3-OH···Ser301. However, in AdoCbl B12-dDDH, this energy difference is higher, implying that GOL exists predominantly as the C3-OH···Asp335 conformer. These findings offer a new perspective for investigations of substrate-induced inactivation of the B12-dDDH enzyme.


Assuntos
Domínio Catalítico , Cobamidas/metabolismo , Glicerol/metabolismo , Simulação de Dinâmica Molecular , Propanodiol Desidratase/química , Propanodiol Desidratase/metabolismo , Cristalografia por Raios X , Ligação Proteica
18.
J Am Chem Soc ; 140(27): 8487-8496, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29894625

RESUMO

We present a series of QM/MM calculations aimed at understanding the mechanism of the biological dehydration of glycerol. Strikingly and unusually, this process is catalyzed by two different radical enzymes, one of which is a coenzyme-B12-dependent enzyme and the other which is a coenzyme-B12-independent enzyme. We show that glycerol dehydration in the presence of the coenzyme-B12-dependent enzyme proceeds via a 1,2-OH shift, which benefits from a significant catalytic reduction in the barrier. In contrast, the same reaction in the presence of the coenzyme-B12-independent enzyme is unlikely to involve the 1,2-OH shift; instead, a strong preference for direct loss of water from a radical intermediate is indicated. We show that this preference, and ultimately the evolution of such enzymes, is strongly linked with the reactivities of the species responsible for abstracting a hydrogen atom from the substrate. It appears that the hydrogen-reabstraction step involving the product-related radical is fundamental to the mechanistic preference. The unconventional 1,2-OH shift seems to be required to generate a product-related radical of sufficient reactivity to cleave the relatively inactive C-H bond arising from the B12 cofactor. In the absence of B12, it is the relatively weak S-H bond of a cysteine residue that must be homolyzed. Such a transformation is much less demanding, and its inclusion apparently enables a simpler overall dehydration mechanism.


Assuntos
Clostridium butyricum/enzimologia , Gliceraldeído/análogos & derivados , Glicerol/metabolismo , Hidroliases/metabolismo , Klebsiella pneumoniae/enzimologia , Propano/metabolismo , Vitamina B 12/metabolismo , Biocatálise , Clostridium butyricum/química , Clostridium butyricum/metabolismo , Gliceraldeído/química , Gliceraldeído/metabolismo , Glicerol/química , Klebsiella pneumoniae/química , Klebsiella pneumoniae/metabolismo , Modelos Moleculares , Propano/química , Vitamina B 12/química
19.
Int J Inj Contr Saf Promot ; 25(1): 102-112, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28675092

RESUMO

Given the high risk of severe accidents at level crossings (LCs), this study examined legal and illegal crossings by pedestrians and cyclists at a high-traffic LC in Zagreb, Croatia. Survey data and field observations were collected to identify reasons for risky behaviour. Behaviour was observed under normal conditions and in the presence of various safety measures in order to identify measures that can reduce risky behaviour. Results show that the presence of police officer at the LC was most effective at reducing illegal crossings, while the presence of cameras contributes significantly as well, especially after safety educational campaign when illegal crossing decreases for 59.23%. We can assume that in future the improvement regarding human behaviour on LC could be made with cameras on LC and more frequent educational campaigns. This is the first reported use of field survey and video surveillance methods to analyse user behaviour at LCs in Croatia.


Assuntos
Acidentes de Trânsito/prevenção & controle , Pedestres/psicologia , Assunção de Riscos , Segurança , Adolescente , Adulto , Planejamento Ambiental , Feminino , Educação em Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Pedestres/legislação & jurisprudência , Polícia , Medição de Risco , Comportamento de Redução do Risco , Inquéritos e Questionários , Gravação em Vídeo , Adulto Jovem
20.
Chemistry ; 21(16): 6132-43, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25754795

RESUMO

Model studies of prebiotic chemistry have revealed compelling routes for the formation of the building blocks of proteins and RNA, but not DNA. Today, deoxynucleotides required for the construction of DNA are produced by reduction of nucleotides catalysed by ribonucleotide reductases, which are radical enzymes. This study considers potential non-enzymatic routes via intermediate radicals for the ancient formation of deoxynucleotides. In this context, several mechanisms for ribonucleotide reduction, in a putative H2 S/HS(.) environment, are characterized using computational chemistry. A bio-inspired mechanistic cycle involving a keto intermediate and HSSH production is found to be potentially viable. An alternative pathway, proceeding through an enol intermediate is found to exhibit similar energetic requirements. Non-cyclical pathways, in which HSS(.) is generated in the final step instead of HS(.) , show a markedly increased thermodynamic driving force (ca. 70 kJ mol(-1) ) and thus warrant serious consideration in the context of the prebiotic ribonucleotide reduction.


Assuntos
DNA/química , Desoxirribonucleotídeos/química , Radicais Livres/química , Origem da Vida , Ribonucleotídeos/química , Sulfeto de Hidrogênio/química , Modelos Moleculares , Oxirredução , RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...